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Abstract. We consider a lattice model of two-dimensional vesicles, in which the boundary 
of the vesicle is the perimeter of a self-avoiding polygon embeddable in the square lattice. 
With fixed boundary length m we incorporate an osmotic pressure difference by associating 
a fugacity with the area enclosed by the polygon. We derive rigorous results concerning 
the behaviour of the associated free energy and the form of the phase diagram. By deriving 
exact values of the  numbers of polygons with m edges which enclose area n, and analysing 
the resulting series, we obtain the free energy, the phase boundary and various scaling 
exponents and amplitudes numerically. 

1. Introduction and summary 

Biological membranes consist of lipid bilayers and, when closed, form vesicles. These 
vesicles form a variety of shapes, depending on the pH, osmotic pressure, temperature, 
etc. In an attempt to understand the shapes which can be assumed under the influence 
of thermal fluctuations, the corresponding problem in two dimensions has recently 
been studied by Leibler, Singh and Fisher [ 1,2] through Monte Carlo simulations and 
scaling arguments. A convenient model for the boundary of the two-dimensional vesicle 
is a polygon either in the continuum or on a lattice. The polygon is taken to be 
self-avoiding and one asks, in the lattice version, for the number of polygons with m 
edges enclosing area n [1-3]. One can also ask for the dimensions of the polygon, at 
fixed number of edges in the perimeter, as a function of a fugacity associated with the 
enclosed area [ l ,  21. These problems clearly have interest in their own rights indepen- 
dent of their potential biological implications. 

For the pure polygon problem (i.e. at unit fugacity) the mean-square radius of 
gyration scales as m ” ,  where v is the self-avoiding walk size exponent [I] .  The area 
is expected to scale in the same way [ l ]  and Enting and Guttmann [3] have recently 
confirmed this feature in the lattice model using exact enumeration and series analysis 
methods. Conversely, one can ask how the perimeter scales with the area. Enting and 
Guttmann [3] used series analysis techniques to show that the perimeter scales with 
the first power of the area and Janse van Rensburg and Whittington [4] subsequently 
proved this result rigorously. 

In this paper we consider the number u , ( n )  of polygons per site on an indefinitely 
large square lattice with m edges enclosing area n. We show rigorously that the 
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free-energy-like limit 

M E Fisher el a/ 

m-m lim m-' l ogz  u,(n)y" = < ( y )  (1.1) 

exists and is finite for all values of the fugacity y s  1, and, furthermore, that < ( y )  is 
log-convex and continuous for these values of y .  However, we prove that the limit is 
infinite for y > 1. 

It is also natural to define the two-variable generating function or 'grand partition 
function' 

P ( x , y ) =  c u,(n)x"y". (1.2) 
X Y  

We show that, for y < 1, P ( x ,  y )  converges for x < e-'"'. For y > 1, P ( x ,  y )  converges 
only for x = 0. These results can be expressed in terms of a phase diagram in the space 
of the two fugacities x and y .  The form of this phase diagram is shown in figure 1. 
For x < and y < 1 the polygons are ramified objects, closely resembling branched 
polymers. (In fact the corresponding graphs on the dual lattice are a subset of site 
animals.) As y approaches unity less ramified configurations predominate; at y = 1 
one has standard self-avoiding polygons. This region, { x  < e-"", y S 1) might be 
referred to as the 'droplet' or 'compact' phase. For y >  1 the polygons become 'expan- 
d e d  or 'inflated' and approximate squares, their average areas scaling as the square 
of their perimeters. In this article we do not directly address the behaviour for y < 1 
above the phase boundary (i.e. for x > e-""). We expect, however, that (on considering 
the thermodynamic limit of a sequence of finite lattices) this phase can be described 
as a single convoluted polygon that 'fills' the whole lattice rather like a closed Hamil- 
tonian walk: one might describe it as a 'seaweed phase' 

Figure 1. Plot of thc phase boundary y,(s) or. equivalently. .re(?): solid squares; the curve 
is merely a guide to the eye. The series expansions for the generating function P ( x ,  y )  
converge on the origin side of the phase boundary and an the vertical piece at y =  1:  this 
region defines the dropler or eompocr phase. Far y >  1 the polygons are highly expanded; 
far y < 1 but above the boundary, a seaweed-like phase i s  anticipated. The broken curves 
denote upper and lower bounds for the phase boundary: see text for details. 
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In section 3 we obtain the form of the phase diagram numerically from analysis 
of appropriate series and analyse the behaviour in the region of the multicritical point 
at (x = e-'('J, y = I )  using scaling concepts. 

2. Some rigorous results 

Let u,(n)  be the number of polygons, per lattice site, wea.kly embeddable in the 
two-dimensional square lattice, with m edges enclosing area n. Let 

(2.1) 

so that pm is the number of pc I gons with m edges and a, is the number of polygons 
with area n. For example, p4 = 1, pa = 2, a ,  = 1 and a2 = 2. We define the generating 
functions 

P , ( y ) = I  um(n)y" (2.3) 

A . ( x ) = I  u,,(n)x"' (2.4) 
m 

and 

P ( ~ , Y ) =  1 o , ( n ) x " y " = 2 : P , ( y ) x " = I A A . ( x ) y " .  ( 2 . 5 )  

Consider first polygons with maximum area for fixed perimeter. If the perimeter 
m is a multiple of 4, the maximum area is clearly m2/16, while if 4 does not divide 
m the maximum area is (m2-4)/16. We focus initially on the case y >  1. Since P, (y )  
is not less than any term in (2.3), taking n to be the maximum area yields 

m." m 

Similarly 

(2.7) 
m'/ I6 P,(Y)<P"Y 

Pm = exm+o(mJ (2.8) 
where K is the connective constant of the lattice (or the self-avoiding walk limit), we 
have 

and, since [SI 

for all y 2 1. 
This result has interesting implications for the behaviour of the average area 

& ( y ) - ( n ( m ) ) = I  n u m ( n ) y " l I  um(n)y" (2.10) 
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when y >  1 .  To see this, note first that L,( logy)=log P,(y)  is a convex function of 
l ogy  for all m. This is proved easily with the aid of Cauchy's inequality which gives 

M E Fisher er al 

p m ( y , ) p , ( y 2 )  = E  u,(nl)y?Z: vm(n2)y;' 
"l "2 

2 

a(; o,(n)(y1y2)"'2) 

= [P,!..&!j2. $ . ! I >  

(2.12) 

It remains only to take logarithms. It follows from this that the area functions 

k,(y)  = ri , (y) /m2= m-2a&,( logy)/a logy  

are the derivatives of a sequence of convex functions / , . ( logy)  = m-'L,(log y )  which, 
by (2.9), approach a limit. Furthermore, the limit is also differentiable with 

( 2 . 1 3 )  

In the circumstances a lemma on sequences of convex functions [ 6 ]  implies that 
k , ( y ) +  k,(y) and hence we conclude that 

lim r i , ( y ) / m 2 = & .  (2.14) 

This is independent of y and the qualitative change in behaviour occurs as soon as y 
is greater than unity. (There is no effective entropic restoring force since this scales 
with m, not with m2.) 

For the case y S  1 we note that P, (y )  S p ,  so, from (2.8), lim sup,,, m-' log P,(y)  
is bounded above by K .  By a standard concatenation construction in which two vesicles 
are joined by a 'neck' consisting of a single square, we obtain a larger vesicle and 
thereby find 

u,,+,,(n)aE um,(nl)wJ~-nl-l). ( 2 . 1 5 )  

k&) = Jl,(Iog y ) / a  log y =A. 

m-m 

"l 

Multiplying (2.15) by y "  and summing over n gives 

YP"t,+m,(Y) a [YPm,(Y)l[YPm2(Y)1. (2.16) 

Since m-' log[yP,(y)]  is bounded above for y < l ,  this implies that 

< ( y ) -  lim m-I log P, (y )  (2.17) 
m-m 

exists and is finite for O < y s  1 [ 7 ] .  Moreover, if we define 

fm(Y)=[YPm(Y)ll" (2.18) 

then (2.15) implies that [ 7 ]  

s u p f , ( y )  = lim f , ( y ) = f ( y )  = eiCy). (2.19) 
m-m m>o 

! W e  thz: i!!) = K ,  is the connective constzn!. 

and therefore to prove that 2 ( y )  is log-convex it sufices to show that 
Since P, (y )  is monotone increasing in y, the limit < ( y )  is monotone non-decreasing 

(2.20) 
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This follows immediately from (2.11); it is only necessary to take logarithms, divide 
by m and let m + m. The convexity establishes that t ( y )  is continuous in the interval 

To prove left-continuity at y = 1 we argue as  follows. For each E > 0 we can choose 
[O, 1) .  

m sufficiently large that 

f ( l ) - f m ( l )  < &/2. (2.21) 

f m ( 1 )  -fm (1  - 8) < 4 2  (2.22) 

With this value of m fixed there exists S > 0 such that 

since f m ( y )  is continuous. But (2.19) implies that fm(l - S ) S f ( l - S )  which, together 
with (2.21) and (2.22), gives 

f ( l ) - f ( l - S ) < &  (2.23) 

so that f ( y ) ,  and hence t ( y )  is left-continuous at y = 1. 
Now for fixed perimeter m the minimum area is 

n,i.(m) = (m -2V2 (2.24) 

so that for y S  1 we have 

(2.25) 1m-21/2 Pm(Y 1 Pmy 
and thus obtain the bound 

< ( y )  S K +f log y .  (2.26) 

Similarly, by picking out a particular term in the series in (2.3), we have 

(2.27) 

The number of polygons with perimeter m and minimum area is just the number of 
a certain class of site trees on the dual lattice having ( m  -2)/2 vertices. These can be 
concatenated to prove the existence of a thermodynamic limit which we denote as K ~ .  

Thence we find the lower bound 

t ( y )  3fK,+;log y .  (2.28) 

m-2112 p m ( y ) 3  u m [ ( m - 2 ) / 2 l y '  

These upper and lower bounds for t ( y )  together imply 

lim < ( y ) / l o g  y = f .  (2.29) 
Y - O t  

The generating function P ( x , y )  can be written using (2.17) as 

p ( x , y ) = ~ p , ( y ) x " = ~ e " j ' Y ' + " ' " '  X m (2.30) 

so that the phase boundary is given by 

(2.31) 

The behaviour of [ ( y )  as logy+-m is given by (2.29) and this implies that x, goes 
to infinity as 

x c ( Y ) - Y - 1 / 2  (2.32) 

m m 

and for fixed x this converges for x < 
the curve 

x = x , ( y )  cs e-+). 

when y + 0. 
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Since Z ( y )  is monotone non-decreasing, x , (y )  is monotone non-increasing. In  
addition x ,  is bounded below by e-' for y s 1 and then jumps discontinuously to zero: 
see figure 1.  The two bounds (2.26) and (2.28) imply that the phase boundary satisfies 

(2.33) 

In a similar way we can derive asymptotic results for the generating function A . ( x ) .  
Setting x =  1 we have A.( l )=  a,, and a concatenation construction as used in (2.15) 
immediately gives 

e-xg > x f y  3 e-'". 

(2.34) a, = ex"+o(") 

For x s  1, one has A , ( x ) s  a,, while for x >  1 one obtains 

A , ( x ) s  anxmm.. = a,x2'"+') (2.35) 

so that n-' log A, , (x )  is bounded above for all x < W. Then the concatenation argument 
establishes the existence of the limit 

lim n - ' l o g A , ( x )  =,f(x) (2.36) 

and, similarly, it is easy to show that X ( x )  is log-convex. Since A . ( x )  is monotone it 
follows that i ( x )  is monotone and so i ( x )  22(1) for x 3  1. Similarly, for x 3  1, we 
obtain 

"-ffi 

(2.37) a X*n+2  3 A , ( x )  3 y .+ l (n )x2" t2  

and hence 

, y + 2 l o g x ~ i ( x ) >  lim n- l log  yni2(n)+2Iogx. (2.38) 
n - m  

It follows immediately that 

- 2  lim _- i ( X )  

1-m log x 
(2.39) 

For x S 1 we have, using an inequality from [ 5 ] ,  

"+I  
A , , ( x ) = Z  u , ( n ) x m s ~ p p m x m s  1 (e"x )2k  (2.40) 

m m k = 2  

so that 

i ( X ) s 2 K  + 2  log X (2.41) 

when e-* =z x s 1, and i ( x )  = 0 when x 6 e-%. Note that we expect y,(x)  = e-"'"' to be 
the inverse function of x < ( y )  discussed above although we have not proved this. 

By (2.5) the A , ( x )  are the expansion coefficients for P ( x ,  y )  in powers of y at fixed 
x. Our arguments prove that for x < x,( 1) =e-" the radius of convergence of this series 
is y , ( x )  = 1. Evidently, then, P ( x ,  y )  exhibits a line of nonanalyticities as y +  1 - for 
x<e-". On the other hand, an easy extension of the arguments shows that all the 
derivatives ( d x P / a y k )  remain bounded as y .+ 1 - for x <e-%. It follows that the line 
y = 1 for 0 < x < x,( 1) is a line of essential singularities. This conclusion (and, indeed, 
the argument) is the same as that concerning the existence of 'droplet singularities' at 
a point of condensation or first-order phase transition as developed some time ago by 
Fisher [8] (see also Andreev [9]  and Isakov [lo]). 
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Similar arguments work in three and, indeed, in d > 3 dimensions. In the three- 
dimensional case we consider surfaces in Z' made up  of elementary unit squares, Or 
plaquettes [ I l l .  Let s , ( n )  be the number of surfaces per lattice site, homeomorphic 
to a sphere, having area m and enclosing volume n. We write 

& ( y )  =; sm(n)y" (2.42) 

so that dm(l )=dm is the number of surfaces with area m. 

area. Then it is easy to prove that 
For the case y 2 1 let us focus on surfaces with maximum volume for given surface 

lim m-'12 log d , ( y )  = 6-3/2 log y. (2.43) 
m-m 

We note that the value of this limit goes to zero as y + I+ .  
The surfaces can he concatenated in pairs [ I l l  as in (2.15) to yield the inequality 

s m , + m 2 + 2 ( n ) 3 1  sm,(n l )sm,(n  - n l -  1 ) .  (2.44) 

Moreover, .elfH is exponentially bounded above [12] so that, since 9 p , ( y ) s d m  for 
y s  1, it is straightforward to prove the existence of the limit 

o < 6 ( y )  = lim m-'  log d m ( y )  < m 

"l 

(2.45) 

for all y C  1 ,  and to show that 6 ( y )  is log-convex and hence continuous in [0,1). 
Left-continuity at y = I follows from a minor extension of the argument given for the 
two-dimensional case. At fixed area m the minimum volume is given by 

m-m 

n,,,(m)= (m-2)/4. (2.46) 

For y s 1 we thus have 

s , ( n , , . ) y " - , ~ s & , ( y ) s  d,y"-i* (2.47) 

so that 

0, + 4 log y s d( y ) C 0 +a log y 

where 0 = 6( I )  and 

0 - lim m-' log ,?P,(nmin). 
0 -  ,,-m 

(2.48) 

(2.49) 

If we write 

q ( x ,  y )  = 1 s m ( n ) x m y n  =E d , , , ( y ) x m  = E  emn'J)+o'm) X 

we see that the phase boundary is given by xc=  e-'''?' and, as y + 0, 

(2.50) 
m.n m m 

x,(y)-y-1'4. (2.51) 

As in two dimensions, the phase boundary x , ( y )  is monotone non-increasing and 
jumps discontinuously to zero at y = 1 .  More generally the exponent in this last result 
is just 1/2'd-') .  Again essential singularities arise at y = 1 for x<x,(l) [8]. 
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3. The phase diagram in two dimensions 

From the series given to order m = 42 in Enting and Guttmann [3], together with data 
for m =44 (Guttmann, to be published), we have formed the series A.(x) at fixed 
values of x in the range [e-", e]. These we have analysed by the method of differential 
approximants [13] at each value of x, in order to find the corresponding critical point 
y,(x). At y = 1, corresponding to x =e-" = 0.379 052 we recover the ordinary perimeter 
generating function for polygons, which is singular at y = y,(e-") = 1. For x > eC,  y,(x) 
montonically decreases as x increases. The estimated values are shown in table 1. 
Along this line, the critical exponent for A,(x) is found to be zero, corresponding to 
a logarithmic divergence of P(x, y )  as y + y, (x )  (or possibly some more complicated 
logarithmic function yielding a zero exponent). This is just the branched polymer 
critical exponent [14], as expected along the critical line [l, 21. In fact the differential 
approximant analysis only clearly reveals this value of the exponent for x>O.6. For 
x<O.6 crossover effects manifest themselves for, at the self-avoiding walk limit y = 1, 
the exponent is expected to change discontinuously to 2-rrO=1.5, the pure self- 
avoiding polygon exponent [ 151. For x < 0.6, it is increasingly difficult to estimate y,(x) 
for this reason. The exponent given by the differential approximants steadily increases 
from 0 to 1.5 (its correct value) at y = 1, as x decreases from about 0.6 to e-". While 
we have not quoted confidence limits, we expect errors only in the last quoted digit 

At y = 1 there is a vertical condensation line from (1,O) to (1, e-"). The complete 
phase boundary as established in this way is shown in figure 1. As y +  1-, the phase 
boundary approaches (1, e-") continuously. From the results of the previous section, 
we can also derive upper and lower bounds on the phase boundary. However, these 
hounds require knowledge of two critical points if numerical values are to be obtained. 
The lower bound is given by xc> e - x y - ' / 2  and the upper bound by x c S  (e*oy)-1/2, 
where ex = 2.638 1585 is the usual square lattice self-avoiding walk connective constant 
and exo= 1.9269 is the analogous quantity for those polygons with minimum area for 
a given perimeter. The lower bound becomes exact as y + 1-, while the upper bound 
becomes exact as y +  O f .  We also show these bounds in figure 1. The upper bound is 
given by the critical point of the series whose coefficients are polygons with minimum 
area. This series is given in table 2. 

M E Fisher et a1 

of Y h ) .  

Table I.  Points an the phase boundary determined by differential approximants. Note that 
P ( x ,  y )  diverges logarithmically along this phase boundary: see (3.4). 

2.7183 0.03615 0.9048 0.3020 
2.4596 0.04406 0.8187 0.360 
2.2255 0.05372 0.7408 0.430 
2.0137 0.06540 0.6703 0.505 
1.8221 0.07961 0.6065 0.595 
1.6487 0.09679 0.5488 0.69 
1.4918 0.11758 0.4966 0.79 
1.3499 0.14266 0.4493 0.88 
1.2214 0.1728 0.4066 0.95 
1.1052 0.2089 0.37905 1.000 
1.0000 0.25183 
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Table 2. Series used in the analysis to determine the crossover exponent, bounds on the 
phase boundary and the slope of the scaling axes. Due to a typographical error, the 
coefficient for m = 42 was given incorrectly in [3]. The coefficient for m =44 has not been 
given previously. 

0 
2 
4 
6 
8 
IO 
I2 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 

0 
0 
1 
2 
6 

18 
55 

174 
566 

I868 
6 237 

21 050 
71 666 

245 696 
847 317 

2937 116 
IO 226 574 
35 146 292 

I25 380 257 
441 125 966 

I556301578 
5504340656 

19511769838 

1 
' 

I I  
60 

349 
2 090 

12833 
80 084 

505 917 
3 226 854 

20 742 407 
134 194920 
872912333 

5704551866 

0 
0 
1 
4 

22 
I24 
726 

4 352 
26 614 

165 204 
1037 672 
6 580 424 

42 062 040 
270661 328 

1751614248 
11 391 756 176 

The information contained in the phase digram is equivalent to the dependence of 
the free energy on the area fugacity, as discussed in section 2. There we also discussed 
the dependence of the appropriate free energy on perimeter fugacity x. We show the 
numerical estimates of this behaviour, and the upper and lower bounds, in figure 2. 
The results in this figure are equivalent to the phase diagram given in figure 1 (as 
mentioned above), in that if the phase boundary is approached at constant y the grand 
partition function, p ( x ,  y ) ,  converges for y <e-X'X'. 

We now turn to the scaling form of the generating function in the vicinity of the 
multicritical point x =  x,, y = 1. We denote deviations from this point by Ax =x,-x, 
A y  = 1 - y  with Ax, A y  P 0. We assume that y = 1 is a scaling axist so that the linear 
scaling fields are 

? = A x  - Ay f e2 (3.1) 

i = Ay. (3.2) 
Then, ignoring confluent corrections to scaling, we expect the multicritical behaviour 

where e2 determines the slope of the second scaling axis, and 

in the vicini!y nf the mll!tiCd:?iCz! point to be described by 

P ( x , y ) ; = C o ~ J 1 2 - " " Z ( ~ / ~ i l m ) + B ( x , y )  (3.3) 

t As is usual in the theory of bicritical points, we expect a scaling axis parallel to the condensation line, 
with slope given by dxJdy, which in this case gives vertical slope. Figure I ,  of course, suppons this. 
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-11 I I I 
40 -a5 0 0.5 1.0 

Log x 
Figure 2. Plat of the reduced free energy, i ( x ) .  for polygons of perimeter weighted by 
fugacity x. The two ruled lines for log x 3 0  ( x 3  I )  represent the bounds of (2.38). 

where a,=$ is the usual polygon exponent [16], Z ( z )  is a scaling function with 
normalization Z(0) = 1, + is the crossover exponent and we expect 4 = 2 u  where U = a  
is the usual self-avoiding walk correlation function exponent [15], since y is the variable 
conjugate to the area n which should scale like the mean square size [ I ,  21. The term 
B(x,y)  is the analytic background term around (x,,yc). At ( x , , y c )  the expected 
polygon-like critical behaviour is given by the term Co1?12-"o, while along the critical 
isotherm for y < 1 the behaviour is expected to be 

P(x3 Y) D o h )  +D,(Y) I~I~-~ (3.4) 
where 2 measures the distance from the critical line, and 6 is the specific heat exponent 
corresponding to collapsed polygons, which is expected to be in the same universality 
class as branched polymers [ I ,  2,141 as noted above; in this case we have 6 = 2 so 
that a factor logl?l (possibly to a non-trivial power) should appear in place of Itl*-'. 

YJ 1% P ( x ,  Y)/JYIy=i  

To estimate the crossover exponent +, we construct the series expansion of 

N(x,  1 ) = x  np,(n)x"y"/ ~ p , ( n ) x " y " - 1 ~ / 2 - " o - m .  (3.5) 

At first sight it might be thought that the behaviour should be I?/-', but the denominator 
is dominated by the analytic term B(x,  U), rather than the singular term, with the result 
that the expected behavicur is as shown. We have constructed the series expansion of 
A(x, l ) ,  and analysed it by the method of differential approximants. As expected, it 
is found to be singular at x = x ~ ,  and the exponent is found to be -0.04*0.04. As 
(I = f  this gives + = l.54*0.04, which is entirely consistent with the expected behaviour 
4 = 2 u  =$. This result can also be anticipated from [3], in which it was shown that 
the mean area of polygons with perimeter n behaves asymptotically as n' .5 ;  see also 
Camacho and Fisher [17]. Alternatively, the series expansion of 

y ~ ~ ( ~ , y ) / ~ y l , = , = x  np,(n)x"y"-IiI2-"0-' (3.6) 
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can be used to estimate 4. This series is also given in table 2, and an analysis similar 
to that described above gives 4 = 1.498iO.002. 

We next turn to the question of the slope of the scaling axis e,. We estimate this 
using a method developed by Singh and Fisher [18]. From (3.3) we find 

J P / J ~ ~ , = ~  = -~,z’(o)l;l~-“o-~ + ( 2  - ao)C0~? 1-00/e2 (3.7) 

xJr“/Jx/,=, -i;- ao)coxcifi 1 - 5  I - ’ .UI  

while 
/, P \  

so that a variable multiple of the second term, added to the first, can cancel the 
confluent term with exponent 1-a,. The procedure used in [18] and followed here 
was to construct the two series, and then to vary the multiple until the best estimate 
of the (accurately known) critical point and (exactly known) critical exponent is 
obtained. The first series is given in table 2,  the second series follows from the polygon 
generating function [16]. The appropriate multiple was found to be 0.025*0.025 which 
translates to a scaling axis slope of l / e , =  -0.01 +0.01. That is, we cannot rule out a 
horizontal scaling axis. 

We have also refined the estimate of the amplitude of the mean area series 

~ , ( l ) = ~ n v , ( n ) / ~ v , ( n ) =  N o m 2 ” [ l + o ( l ) ]  (3.9) 

which is related to the first term 2, in the expansion of the scaling function 

Z( 2 )  = 1 +Z,Z+O(Z2) .  (3.10) 

Using the data in [3] we find, with the aid of a Neville table analysis, No= 
0.1416*0.0001. A reanalysis of the data of Privman and Rudnick [19] for the radius 
of gyration of self-avoiding polygons 

(R&)=Mon2”  (3.11) 

leads to an estimate for the amplitude of Mo=0.0564i0.0001. The ratio is N,/M,= 
2.511i0.006. This is less than ?r as expected, and refines the estimate 2.52+0.04 of 
this universal ratio found by Camacho and Fisher [171. 

Finally we note that the behaviour of the critical line x, (y )  near y, = 1 can be found 

singular behaviour at some point, say zc. If zc < m, as seems probable from the numerical 
estimates for x, (y ) ,  the critical line is determined by ~/laZcl’ = zc which yields 

x,(y) x,(l) + ( A y / z , ) 2 ” + A y / e , + .  . . . (3.12) 

As mentioned in section 2, the derivative dx,/dy is expected to diverge as y +  1 - .  
Partial differential approximants [20,21] provide a systematic route to the estimation 
of z, and of x,(y) near y,= 1 where, as mentioned, strong crossover effects hamper 
single-variable methods. 

from the scaiing form (3.5) by o.userving ihai ihe scaling funciion Z ( 2 )  w-iii exh<oii 
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